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Error Analysis for Fourier Series Evaluation 

By A. C. R. Newbery 

Abstract. A floating-point error analysis is given for the standard recursive method of 
evaluating trigonometric polynomials. It is shown that, by introducing a phase-shift, one 
can hold the error growth down to an essentially linear function of the degree. Explicit 
computable error bounds are derived and numerically verified. 

Given the problem of evaluating the Fourier series 
N-i N-i 

F(O) = E C, cos rG + E Sr sin rA, 
0 0 

the most efficient, known method is Clenshaw's algorithm, which is also known as 
the "Goertzel-Watt" algorithm [1], [2]. The numerical properties of the floating- 
point algorithm were analyzed by Gentleman [2], and the principal conclusion was 
that the cumulative effect of rounding errors could become very severe whenever 
0 was small modulo ir. By using the phase-shift 5 = ir/2 - 0, one can always replace 
the Fourier series F(O) by the equivalent series G(0) = F(ir/2 - 4), and one can 
therefore always avoid evaluating a Fourier series at a small argument. If we arrange 
to perform the phase-shift whenever 0 is in the range (- ir/4, ir/4) modulo ir, we 
can guarantee that all evaluations occur with arguments in the range [ir/4, 3ir/4] 
modulo ir. Under these conditions, the behavior of the Clenshaw algorithm will be 
shown to be quite good. The transformation consists in determining the coefficients 
C,, S. of G(0), and these are related to C,, Sr by 

(1) [C] = <3Cr'], 

where 

Tr 
I Lo 0? 9 1? ok I 0- 1? 0 1? -o 9 

according as r = 0, 1, 2, 3 modulo 4. 
The transformation, therefore, does not involve any arithmetic; it simply involves 

some sign-reversals and some swapping of terms between one part of the series and 
the other. 

Assuming that the phase-shift, if necessary, has been performed, we now examine 
the error-sensitivity of Clenshaw's algorithm, on the assumption that 0 is in [r/4, 37r/4] 
modulo ir. The algorithm is defined by 
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(i) U= UN+ 1 = 0, 

(ii) Ur = If + 2Ur+I COS 0 - U,+2, r = N - 1, N - 2, 1, 

(2) N-i 
) (iii) C cOS r0 = o + Ul cos 0-u2, with f, interpreted as Cr. 

0 

N-i 

(iv) E Sr sin rO= u sin 0, 
0 

with f, interpreted as S. in the recursion (ii) defining I ,. 

Clearly, the recursion defining ur,} is the most sensitive part of the com- 
putation. Written in matrix form, this recursion is equivalent to Ma = f, 
where a = {UN1, UN-2, * * * T U1 I f = IfN-i, fN-2, * * * ,f IT and Mis amatrixwith 
units on the diagonal and sub-subdiagonal, -2 cos 0 on the subdiagonal and zero 
elsewhere. The inverse of M, quoted in [2], is [m'J, where 

in, = .0 j > i, 

(3) = sin(i - j + 1)0/sin 0, j _ i. 

We now perform a backward error analysis for the recursion (2)(ii) defining 
Ur, . Let I u* I be the sequence actually developed, in view of the fact that the right 

sides of (2)(ii) are subject to rounding errors ar. Hence, we shall have 

(4) aQ* = M-V(f+ )= a+ M-16. 

Although we do not ordinarily know Sr, we can compute bounds Ar such that I 6, I< 
A. The value we determine will depend on what assumptions are made about the 
precision and sequencing of the arithmetic. In order to bound the error in the com- 
puted values of (2)(iii), (iv), it is only necessary to find bounds for I u* - u1I, Iu - u21. 
From (3), (4), we see that 

N-1 
inN-r 2 

(5) IU?- = | sin(N - r)0 6N-,r IIII, Icosec 01 _ 2'12 IlH 

This follows from the fact that when 0 is in [ir/4, 37r/4], 
N-i 

Isin(N - r)0/sin 01 < Il/sin 01 21'/2 and IIAII = X IArL 

We now study the recursion 

r*= fl[Il(fr - Ur*+2) + fl(2u,*+i cos 0)] 

which is equivalent to 

r*= fr - Ur*+2 + 2u*+ COS 0 + 6r, 

where the quantity Sr is not explicitly added; it is there to accommodate the difference 
between the indicated floating operations and the true mathematical values. If we 
are working in single precision b-digit binary arithmetic, the relative error r in each 
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operation will be bounded in magnitude by e = 2-b. We shall therefore obtain 

U* = (1 + rl)[(fr - Ur*+2)(1 + r2) + 2u*+I COS 0(1 + r3), 

6, = 
(Qf 

- U*+2)[(1 + rl)(1 + r2) 
- 1] 

(6) + 2u*+I cos 0[(1 + rl)(1 + r3) - 11, and 

6r1 - Ar = K(IfrI + IU*+21 + 2 Iu*I+ COS 01), 
where K = (1 + e)2- 1 = 2E + e. 

Using the same argument as [2, Eq. (6)], we deduce from (6) that 

(7) IIaJI < K[JiflJ + (1 + 2 Icos 01) Ia*II1. 

Using any vector norm and subordinate matrix norm, it follows from (4) that 

(8) li0n1 = IIM-lW + 8)11 < IIM-II (11111 + 11811) < 1IM-111 (lu0l + III&I). 
Combining this with (7), we obtain 

Jj1aJ -< K[lIIII + (I + 2 Icos 0|) JIM-'II (livi1 + JJAJJ)]@ 

Hence, 

|JAII [I - K(1 + 2 Icos 01) JIM-'II] < K 11111 [I + (I + 2 Icos 01) JIM_'II]. 

We now interpret this using the L1 norm, noting that JIM-'lII ? (N- 1)/Isin 01. 
On substituting into (5), we conclude that 

(9) IU* - < K 11f111 Icosec 01 [1 + (1 + 2 Icos 01)(N - 1) Icosec 01J Iut 
Il 

= 1 - K(1 + 2 Icos 01)(N - 1) Icosec 01 

provided the denominator is positive. 
The above proviso is not a severe constraint. The shortest word length commonly 

used in scientific computation is 21 binary digits. In these conditions, it would take 
a series of over a quarter-million terms to make the denominator vanish. 
When 0 is in the range [ir/4, 3ir/4] modulo ir, we may note that the quantity 
(1 + 2 Icos 01) Icosec 01 takes its maximum value of 2 + 21/2 when 0 = 7r/4 modulo Iv. 
This enables us to rewrite (9) in a form that is independent of 0, provided that 0 is 
in the stated range. Thus 

(10) Iug -~ < K 11f11K 21[/21 + (2 + 2 12)(N- 1)] 
IU U1 < 

1- K(2 +2w2)(N - 1) 

In all "reasonable" situations, the denominator of (10) will be very close to unity, and 
the error bound can be taken as a linear function of N. The same bounds given by (9), 
(10) for Iu* - u, I will also serve for Iu* - u21, the reasoning being the same, but the 
vectors and matrices occurring are of order one less, so that N - 1 could be replaced 
by N - 2. 

If greater accuracy is required, it can be obtained by use of local double precision. 
If we replace (2Xii) by 

,* = Rnd(fr + 2u* I cos 0 -U* 2), 
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where the quantity in parentheses is obtained by using higher-precision arithmetic 
on single-precision arguments in such a way that the computed value is the "mathe- 
matical" value correctly rounded to single precision, then we may say 

Ar EI| l I = Eu*= eIM-(f + 8)H? E eJIM -'II (HfJl + 12ll). 
Hence 

112il1 < e lJfill (N - 1) Icosec OI/[1 - E(N- 1) Icosec Oil 

and so 

(11) oIU* - lI ? I if I 1 (N - 1) cosec2 0/p1 - E(N - 1) Icosec 01. 

This will ordinarily reduce the error bound by a factor between 2 and 5 as compared 
with (9). 

One disadvantage of the proposed phase-shift is that it will convert a pure sine 
or cosine series into a mixed series, thereby approximately doubling the cost of 
evaluation in this case. In many cases however, the stability and error bounding will 
be considered to be worth the cost. An alternative method for achieving stability 
without additional cost was proposed by Reinsch (unpublished) and quoted at the 
end of [2]. 

The proposal, valid for 0 - 0 modulo 27r, is to compute the following recursion, 
which is mathematically equivalent to (2): 

dr = fIr + dr+1 - 2(1 - COS O)Ur+l, r N 1, N 2, 1, 

(12) Ur = Ur+1 + dr, 

dN = UN = 0. 

In our experience on general problems, the algorithm does indeed perform about 
as well as the phase-shifted Goertzel algorithm throughout the range 0 < 0 < ir/2. 
However, no formal error bound is available for it, and it is capable of performing 
badly, as the following "loaded" example illustrates. 

Example. Evaluate a cos 1000, where 0 = 0 and a is a floating number without 
many trailing zeros, e.g. a - 31/2. 

The Reinsch algorithm will yield 

dloo = d9g = *.. = d, = a, and 

U100 = a, Ui9g = a + a, * . , Ur = Ur+1 + a. 

The "mathematical" value of UT is (101 - r)a, but computationally this quantity 
will result from (100 - r) rounded additions of a to itself. Finally, the "true" result 
of a will be approximated by performing the subtraction ul - u2, where ul - 100a 
and u2 - 99a. It is true that the unmodified Goertzel algorithm, using the recursion 
Ur= 2ur+, - Ur+2, will perform even worse on this problem, but a phase-shift will 
translate the problem into an evaluation of a cos 1004), where 4 = ir/2. Let u' } be 
the sequence of u's generated by the Goertzel algorithm on this problem; then u100 = a, 
use = 0, us8 = - a, etc. Although this example is admittedly loaded, it does indicate 
that the Reinsch algorithm is capable of producing inferior results, even within the 
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argument range for which it is specifically designed. We have no evidence that such 
behavior is typical; we merely note that it can occur. 

The case where a Chebyshev expansion is to be evaluated at an argument > 1 
is equivalent to applying the recursion (2) with cos 0 > 1. Equivalently, we have to 
replace the trigonometric functions in (2), (3) by their hyperbolic counterparts. 
Since we now have no periodicity, we cannot stabilize by means of a phase-shift. 
The Reinsch algorithm then appears to be the best approach, at least for arguments 
not greatly exceeding 1. 

In order to validate the error bound (9), we defined three different Fourier series 
300 Cr COS rO + E300 Sr sin ro and evaluated each at 100 arguments randomly 

chosen. The "error" was taken to be the difference between the single-precision 
and double-precision evaluation, care being taken that the two runs operated on 
identical data, e.g. the double-precision value of cos 0 was taken to be the single- 
precision value with the less significant word set to zero. The three problems were: 

(A) Cr, Sr uniform in [-5, 5], sin 0 uniform in [-.5, .5]. 
(B) Cr, Sr= e-r3(C', SI), where C', SI are uniform in [-5, 5], so as to make 

a damped series; sin 0 uniform in [-.5, .5]. 
(C) C300 = 31/2. All other coefficients zero, sin 0 uniform in [-.25, .25]. 
In the following table, the columns refer to problems (A), (B), (C), respectively; 

the rows refer to the phase-shifted Goertzel (PSG), Reinsch (R) and unmodified 
Goertzel (UG) algorithms, respectively. For each 0 value in each of the three tests, 
the error bound for the PSG algorithm was computed; firstly, (9) was used to bound 
the errors in u*, U* in terms of 0 and the series coefficients, then (2)(iii) and (2)(iv) 
were used in order to place a bound on the extent to which errors could affect the 
computed evaluation. The resulting error bound E was used as a standard against 
which the observed errors were measured. For each series and each algorithm, the 
mean and maximum of the quotient observed errorl/E were computed and are 
tabulated below. 

A B C 
(neutral) (damped) (highly undamped) 

PSG .000804 .000162 .0337 
.00234 .000719 .0668 

R .000355 .00105 .0483 
.00384 .00323 .150 

UG .0116 .00632 1.91 
.215 .0962 24.1 

In case it may be thought that these results indicate that the bound (9) is too 
conservative, the following considerations should be borne in mind. Firstly, an 
error bound has always to be computed on the unlikely assumption that all the local 
errors conspire to maximize the total error; secondly, the bounds would have looked 
less conservative if a genuine binary machine had been used. It was necessary to 
consider six hexadecimal digits as uniformly equivalent to 21 binary, although some 
of the arithmetic had precision up to 24 binary digits. 
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In conclusion, it seems appropriate to ask whether the bound (9) is attainable, 
or whether it could possibly be replaced by a sharper bound. To determine this, we 
must look in turn at the various inequalities on which (9) depends. If the first in- 
equality in (5) could ever be replaced by an equality, this would be equivalent to 
asserting that the quantities 5, were proportional to sin(N - r)O, and Isin(N - r)0j = 1 
for all r. While the first condition could occasionally be satisfied, the second clearly 
cannot, except in the case of a one-term 'series'. Something has therefore been given 
away by this inequality, but the give-away turns out to be quite small in general. 
The average value of Isin kOl as k -* o is the average distance of points on the cir- 
cumference of a unit circle from the diameter, namely 7r/4. By taking the average of 
isin(N - r)0 to be unity, we are therefore not conceding substantially more than 
is necessary in the general case. We now examine all the inequalities on which (9) 
depends and write down the necessary conditions under which each individual 
inequality could be replaced by an equality. From (5) through (8), these conditions 
are seen to be the following: 

(i) The sign of 6N, sin(N - r)O is constant for all r. 
(ii) The quantities u*2,, 1 are in constant ratio, so that the vector a* is 'geomet- 

ric' in the sense that its elements form a geometric progression. Also f is parallel 
to a*. 

(iii) f is parallel to 6 and f is parallel to e = (1, 0, 0, ). 
This follows from the fact that IM`1 , is the absolute sum of the first column 

of M-1. These conditions are seen to be generally incompatible, since f has to be 
parallel to 0* and e,, and e, is not a geometric vector. Hence, the bound (9) is not 
attainable, but a study of the inequalities will indicate what type of problem should 
generate errors that come closest to the bound. The inequalities differ greatly in the 
size of their contribution to the bound. Sometimes a magnitude, which could in fact 
be zero, is replaced by a small bound; sometimes it is replaced by a not-so-small 
bound. The replacement of JIM-'(f + 011, by JIM-1jj,(HtHf1j + IIAII,) is the most 
important instance of the latter kind, and this substitution will only be realistic 
if A - a&, for some scalar a. From this, we deduce the following assertion: 

"The kind of Fourier series on which the (phase-shifted) Clenshaw algorithm will 
be least accurate is one in which the high-frequency terms have relatively large co- 
efficients". 

This assertion is well evidenced by the table above. On examining the results for 
the PSG algorithm, which is the only one to which our analysis strictly applies, we 
see that the bound is indeed more nearly attained on the neutral series (A) than on the 
damped series (B); it is closest for the highly undamped series (C). Similar remarks 
apply to the unmodified Goertzel algorithm except that the theoretical bound can 
be (and actually is) exceeded. 
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